

VVMethods and SET Level – Towards a comprehensive framework for AD safety ensurance

Mark Schiementz (Co-Coordinator VVM) Christian Neurohr (Lead Criticality Analysis) Henning Mosebach (Lead Liaison/PEGASUS Family)

Gefördert durch:

Bundesministeri für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

The **PEGASUS Family** focuses on development / testing methods and tools for AD systems on highways and in urban environments

PEGASUS

- Scope: Basic methodological framework
- Use-Case: L3/4 on highways
- Partners: 17

2016

www.pegasusprojekt.de/en

VVMethods at a glance

Development of an overall safety argumentation and validation methodology for urban automated driving safety cases

- cope with the multitude of possible traffic scenarios by a detailed analysis framework of risks.
- develop a verification and validation methodology for AD functions that covers the whole vehicle architecture and can be broken down to component level
- enables exchange between OEM and TIER by establishing common interfaces across manufacturers and digitalization of the validation chain

MIL

SW module test

Overall Project Architecture VV Methods / Set Level

Methodological Bridge VVM – SET Level Framework Mapping

main focus of simulation engineering task can be assigned to the VVM safety argumentation layer structure.

VERIFICATION VALIDATION METHODS

> simulation objectives, environment and system under test are derived by claims, arguments and system data as e.g. capabilities.

Positive risk

Methodological Bridge VVM – SET Level

SETL & VVM Interface Anticipation

the requirements of a > credible simulation process for the VVM argumentation structure must be defined.

ERIFICATION VALIDATION METHODS

Criticality Analysis in VVM

Claim: (contribution of the VVM Criticality Analysis to the Safety Argumentation) We **identified** and **analyzed** the relevant factors influencing criticality in the operational domain (OD).

Arguments: (to substantiate the claim)

The "Criticality Analysis" is methodically **sound** and the resulting **artefacts** are sufficiently **complete** and substantiated by **evidences**.

Artefacts: (resulting from the Criticality Analysis)

- criticality phenomena (associations with criticality)
- causal relations (plausible relations causing criticality)
- abstract scenarios (featuring phenomena and causal relations)

Tools: (employed for the Criticality Analysis)

- metrics, ontologies, simulation
- acquisition & management of knowledge and data
- data analysis (real-world & synthetic)

Criticality Analysis – Basic Concept

Assumptions:

- set of criticality phenomena is limited and manageable \rightarrow finiteness (of artifacts)
- ▶ relevant phenomena leave traces in growing data basis → completeness (of artifacts)

Simulation-based Analysis within the VVM Criticality Analysis

Minimal Required Functionality:

- representative sampling from large scenario classes
 - e.g. instantiation of logical scenarios using parameter variation
- execution of concrete scenarios
- evaluation of criticality metrics
- \rightarrow Provided by SET Level SUC1.

Usage within the VVM Criticality Analysis:

- plausibilization of causal relations
 - including quantification of the effect size
- engineering, calibration and comparison of criticality metrics
- > abstraction and refinement of criticality phenomena and causal relations

Plausibilization of Causal Relations using Simulation

Task: Generate evidences for the causal relation "occlusion"

Approach:

- consider an abstract scenario with a static occlusion present
- for simulation derive a set of associated logical scenario
 - e.g. OpenPASS, CARLA, ...
 - identify variation parameters via confounder analysis of causal graphs

Logical "occlusion" scenario in CARLA.

29.04.2021

Parameter	Range
ego start position (x, y) ego target position (x, y) ego target speed (km/h) bicyclist start position (x, y) bicyclist target position (x, y) bicyclist target speed (km/h) Dimension of O (discretized as	$[-58, -33] \times [-29, -28]$ $[50, 55] \times [-29, -28]$ $[25, 60]$ $[31, 32] \times [3, 15]$ $[-50, -45] \times [-34, -33]$ $[10, 25]$ $\{0, 1, 2, 3, 4, 5, 6, 7\}$
number of parking cars) Position of $O(x, y)$	$[2, 20] \times ([-35, -34] \cup [-26, -25])$

Evaluation of Criticality Metrics and Data Analysis

Approach (continued):

Generate Data Set:

- use variation of parameter to obtain concrete scenarios
- execute concrete scenarios in simulation and evaluate suitable criticality metrics
- > Data Analysis:
 - for each run evaluate whether the phenomenon was present or not
 - > perform statistical analysis of the resulting data set

Variable	Correlation (ρ)	p-value
Occlusion	0.29	$p < 10^{-20}$
Duration of occlusion	0.26	$p < 10^{-15}$
<i>ego</i> starting position (x)	-0.24	$p < 10^{-14}$
<i>bicyclist</i> starting position (y)	-0.35	$p < 10^{-29}$
bicyclist target speed	0.42	$p < 10^{-44}$
Position of $O(y)$	0.20	$p < 10^{-9}$

Correlation analysis between variables and metric

Effect size of causality on metric:

- Cohen's d = 0.93
- a_req,cond 2.9 times higher for "occlusion" scenarios

Evaluation of criticality metrics over time: critical "occlusion" scenario vs. uncritical "non-occlusion" scenario

11

Claim (Criticality Analysis): We identified and analyzed the relevant factors influencing criticality in the operational domain (OD).

Sub-Claim (Occlusion): We analyzed the relevant criticality phenomenon "**occlusion**" and its effect on criticality in a urban intersection scenario.

Evidence (Simulation):

- generation of data providing evidence for the plausibility of the causal relation "occlusion"
- enabling of statistical analysis
- quantification of the effect size of "occlusion"

Summary

SET Level and VVM:

- data generated from simulation can be used as evidence for the safety argumentation within AD release
- claims, arguments and system data of the safety argumentation supply the simulation with objectives, environment and system under test
- the three typical engineering task domains of SET Level fit the AD Layer-Model of VVM.

Outlook:

 increasing exchange of models and scenario descriptions between both projects

SET Level, VVMethods and the PEGASUS Family

29.04.2021

Meeting the PEGASUS Family...

- ...on our project and networking websites
- ... in several international working groups in > standardization and regulation
- ...on bilateral exchange meetings >
- …on conferences and workshops, e.g.

UNECE

https://setlevel.de

e.g. with SAKURA (JPN), HEADSTART (EU), NHTSA (US), PEGASUS network (INT), VIVALDI

(GER), ARCADE (EU), ADScene (FR)...

Thank you for your attention!

Henning Mosebach, Mark Schiementz, *Roland Galbas, Christian Neurohr

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages