Simulation-based Development and Testing of Automated Driving

It's all about Trust – Simulation Credibility

SET Level

Anne Grätz (Bosch), Dirk Frerichs (Opel), Birte Kramer (OFFIS) 29.04.2021

on the basis of a decision by the German Bundestag

[1] John S. Carson, 2002 : "Model Verification and Validation" [2] NASA Standard for models and simulations NASA-STD-7009A, 2016

* Definitions based on NASA/ASME

* Definitions based on NASA/ASME

* Definitions based on NASA/ASME

Requirements for Verification/Validation

- Depending on the intended use, a simulation model needs to fulfill different requirements
- We propose a level-based approach similar to NASA 7009-A

SET Level

Level	Validation
4	Modeling and Simulation (M&S) results compare favorably to measurements on the Real World System (RWS) in its operating environment or to results from a higher-fidelity M&S that satisfies the conditions for Level 4. Validation points completely span the domain of operation for the RWS. Favorable comparisons are obtained for all response quantities.
3	
2	
1	The model is conceptually validated. The problem statement (intended use) is clearly stated and well understood. The conceptual model, requirements and specifications are correct and sufficiently address the problem.
0	Insufficient evidence

CS	Target Vehicle
number	Relative velocity of target object
1	-10 km/h
2	- 30 km/h
3	- 50 km/h
4	- 50 km/h
5	- 70 km/h
6	- 70 km/h
7	- 90 km/h
8	- 90 km/h
9	+ 10 km/h
10	+ 10 km/h
11	+ 30 km/h
12	+ 30 km/h
13	+ 50 km/h
chec	k for relative velocit
16	+ 70 km/h
17	+ 90 km/h

+ 90 km/h

18

Image: closed bit aget object Number Longitudenal distance Lateral distance 6 m 1 150 m 2 100 m 20 m 2 100 m 149 m 149 m 40 m 4 149 m 149 m 125 m - - - - 148 m - 100 m 100 m - 125 m - - - - - 148 m - 100 m 100 m - - - 125 m - - - - - - - 111 80 m -	cs	10db/sqm Corner				cs					Target	Pedest	rian			
6 m 1 150 m 20 m 149 m 40 m	umber	Distance to target object	Velo	ocity	of targe	t object	ect Longitudinal distance				Lateral distance					
15m 2 150m 40m 4 149m 40m 60m 60m 100m 125m 1 125m 1 9 100m 125m 1 100m 125m 1 100m 125m 1 100m 148m 1 9 150m 1 0 150m 1 0 160m 100m 1 160m 1 10 160m 1 10 160m 1 10 160m 1 10 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 0 1 <t< td=""><td>1</td><td>6 m</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>150 ı</td><td>n</td><td></td><td></td><td></td></t<>	1	6 m							1			150 ı	n			
20 m 3 149 m 40 m 00 m 00 m 00 m 00 m 0 100 m 100 m 100 m 125 m 0 100 m 148 m 100 m 100 m 150 m Validity Assessment Map for MVC StaticCorner x_pos 4,m Validity Assessment Map for MVC StaticCorner x_pos 1 1 0	2	15 m							2			150 ı	n			
40 m 60 m 100 m 100 m 125 m 148 m 148 m 1125 m	3	20 m							3			149 ı	n			
^{60 m} ^{100 m} ^{100 m} ^{100 m} ^{125 m} ¹⁰ ^{114 m} ^{1150 m} ¹⁰ ^{110 m} ¹¹¹ ¹¹⁰ ^{100 m} <tr< td=""><td>4</td><td>40 m</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td></td><td></td><td>149</td><td>n</td><td></td><td></td><td></td></tr<>	4	40 m							4			149	n			
80 m → stationary target 125 m 100 m 148 m 100 m 150 m 100 m 100 m 100 m 110 m 80 m 125 m 100 m 130 m 100 m 100 m 100 m	5	60 m		C	her	∽k fa	or d	ista	nce	א י	cur	acv				
100 m → stationary target 1125 m 0 1148 m 0 1160 m 0 117 80 m 110 100 m 111 80 m 111 100 m 111	6	80 m					51 G				cur	acy				
125 m - <td>7</td> <td>100 m</td> <td></td> <td>-</td> <td>→ s</td> <td>tati</td> <td>ona</td> <td>ry t</td> <td>arg</td> <td>et</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	7	100 m		-	→ s	tati	ona	ry t	arg	et						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	125 m													_	
149 m 10 100 m 150 m 1 80 m 12 80 m 12 80 m 1 2 6 7 8 9 10 11 1 2 6 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 6 2 2 2 2 2 2 2 2 2 2 2 2 1 10 1 1 1 1 1 1 1 2 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1	9	148 m							9			100 ı	n		_	
150 m 11 80 m Validity Assessment Map for MVC StaticCorner x_pos -4 m 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 2 1 1 1 1 1 10 <t< td=""><td>10</td><td>149 m</td><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td><td></td><td></td><td>100 r</td><td>n</td><td></td><td>_</td><td></td></t<>	10	149 m							10			100 r	n		_	
$t speed$ $Validity Assessment Map for MVC StaticCorner x_pos$ -4_m	11	150 m							11			80 n	n		_	
t speed V _{abs} = (64 18 18)%, res.: 5% V _{rel} = (65 15 20 0)%, res.: 1% Linuation-based peveropment and resting of Automated						Valid	ity Ac	l socemi	17 ont M	। an for	MVC	X() n Static	n Torner	v no	ו כ	4
t speed V _{abs} = (64 18 18)%, res.: 5% V _{rel} = (65 15 20 0)%, res.: 1% L speed Development and resting of Automated Dimutation-based Development and resting of Automated Dimutation-based Development and resting of Automated						vanu				up 101		-	-	~_po	J .	-4_m
t speed V _{abs} = (64 18 18)%, res.: 5% 1 1 2 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4						2	3	4	5	6	7	8	9	10	11	
t speed V _{abs} = (64 18 18)%, res.: 5% V _{rel} = (65 15 20 0)%, res.: 1% Compared to the second of Automated Compared t				1	1			2	3		1		1	1		
t speed $V_{abs} = (64 18 18)\%, res.: 5\%$ $V_{rel} = (65 15 20 0)\%, res.: 1\%$				•		-								-		
t speed V _{abs} = (64 18 18)%, res.: 5% V _{rel} = (65 15 20 0)%, res.: 1% Unucluor-based beveropment and resting of Automated					2				3						1	
t speed V _{abs} = (64 18 18)%, res.: 5% V _{rel} = (65 15 20 0)%, res.: 1% Mage de text of Automated Mage de text of Automated														-		
t speed $V_{abs} = (64 18 18)\%, res.: 5\%$ $V_{rel} = (65 15 20 0)\%, res.: 1\%$ $V_{abs} = U_{abs} = U_{$						3	2	9	3						2	
t speed $V_{abs} = (64 18 18)\%$, res.: 5% $V_{rel} = (65 15 20 0)\%$, res.: 1% Simulation-based Development and resting of Automated								-	2	2	2		2	2		
t speed $V_{abs} = (64 18 18)\%, res.: 5\%$ $V_{rel} = (65 15 20 0)\%, res.: 1\%$							4	-	-	-	-	-	•	•	<u> </u>	
t speed $V_{abs} = (64 18 18)\%, res.: 5\%$ $V_{rel} = (65 15 20 0)\%, res.: 1\%$								5	3	3	3	3	3	3	3	
t speed $V_{abs} = (64 18 18)\%, res.: 5\%$ $V_{rel} = (65 15 20 0)\%, res.: 1\%$																
t speed $V_{abs} = (64 18 18)\%, res.: 5\%$ $V_{rel} = (65 15 20 0)\%, res.: 1\%$									6							
t speed $V_{abs} = (64 18 18)\%$, res.: 5% $V_{rel} = (65 15 20 0)\%$, res.: 1% Simulation-based Development and resting of Automated										7		1	1	1	•	
t speed $V_{abs} = (64 18 18)\%$, res.: 5% $V_{rel} = (65 15 20 0)\%$, res.: 1% Simulation-based Development and resting of Automated											8				2	
t speed $V_{abs} = (64 18 18)\%$, res.: 5% $V_{rel} = (65 15 20 0)\%$, res.: 1% Simulation-based Development and resting of Automated											0	<u> </u>		-	-	
$V_{abs} = (64 18 18)\%$, res.: 5% $V_{rel} = (65 15 20 0)\%$, res.: 1% Simulation-based Development and resting of Automated	tant s	peed										9	1	1	1	
V _{rel} = (65 15 20 0)%, res.: 1% کוותוומנוסו-שמצפת שפעפוסטוופחר מונג וואס of Automated				Va	abs = (6	64 18	3 18)	%, re	s.: 5%	6			10	•	1	
V _{rel} = (65 15 20 0)%, res.: 1% السلط المعالي المحالي المح محالي محالي المحالي م				ŭ										14		
simulation-based Development and resting of Automated				Vr	. _{el} = (6	55 15	20	0)% <i>,</i>	res.:	1%				11	<u> </u>	
							3	mu	auu	I-Das	еи г	vevei	ohiii	епса	ли і	esting of Automat

- 6.1.3 Configuration Samples
- Validation Effort 6.1.4

Introduction

Reference Documents

General Information

Validation's Main Objective

Validation Methodology

Scope of Validation

Validity Assessment

Purpose

Scope

1.1

1.2

2

3

4

5

6

5.1

5.2

5.3

6.1

6.1.1

6.1.2

- 6.2 Data Acquisition for Validity Assessment
- 6.2.1 Experimental Set-Up
- 6.2.2 Test Procedure
- 6.2.3 Data Acquisition and Processing
- Validity Assessment for Each MVC 6.3
- MVC1 Longitudinal Position Absolute 6.3.1
- MVC2 Longitudinal Position Error 6.3.2
- MVC3 Lateral Position Error 6.3.3

- 8.1.4 Validation Effort
- 8.2 Data Acquisition for Validity Assessment
- Experimental Set-Up 8.2.1
- 8.2.2 Test Procedure
- 8.2.3 Data Acquisition and Processing
- Validity Assessment for Each MVC 8.3
- MVC1 Longitudinal Distance Absolute 8.3.1 MVC2 - Lateral Distance Absolute 8.3.2
- 8.4 Overall Validity Assessment
- Validity Assessment Results 8.4.1 8.4.2 Discussion of Overall Results
- 8.4.3 Limitation

Application Domain	Credibility Criteria
Sensor	Operational Validation
Sensor	Conceptual Validation
: :	:
Vehicle Dynamics	Operational Validation

Input from Process

Selection of Suitable V&V-Activities

	Focus	: Why and How?	Focus: W		
Application Domain	Credibility Criteria	Methods	Validation Criteria	Techniques	Roles
Sensor	Operational Validation				
Sensor	Conceptual Validation				
:	:				
Vehicle Dynamics	Operational Validation				
Input fr	om Process	Library c	of V&V-Metho	ds and -Tech	niques

Selection of Suitable V&V-Activities

	Focus:	Why and How?	Focus: W		
Application Domain	Credibility Criteria	Methods	Validation Criteria	Techniques	Roles
Sensor	Operational Validation	Reqbased, Statistical (Viehof)	Metric Validity Criteria	Sensitivity Analysis	DeveloperTestdriver
		• •	• • •	• • •	•
Sensor	Conceptual Validation				
:	: :				
Vehicle Dynamics	Operational Validation				

Input from Process

Library of V&V-Methods and -Techniques

Quality Criteria for Coupling of Simulation Models

- What do we even mean by coupling (models vs. simulators)?
- Why is coupling necessary?
 - Generally desirable to abstain from coupling (potential source of error, often introduces delays)
 - However, often necessary, e.g., due to complexity, modularity requirements, or IP protection

Quality Criteria for Coupling of Simulation Models

- High Level Goal: Identify, quantify, and assess the influence of coupling
- Ideal Strategy: For one instantiation of a simulation platform, compare with a monolitic system
 - Due to lack of monolithic system
 - Assess coupling mechanisms in general (e.g., comparing models of computation of the coupled system, analyse necessary information)
 - Also test coupling mechanisms for "easier" models where we actually have access to a monolitic system and then generate more general statements

Bay of Model Credíbílíty

... to be continued

Proudly presented by:

Raíner Aue (Contínental) Dírk Freríchs (Opel) Anne Grätz (Bosch) Bírte Kramer (OFFIS) Píerre Maí (PMSF) Markus Steímle (TU Braunschweig, IfR) Dírk Ulbrícht (Contínental) Níco Weber (Opel)